作者单位
摘要
1 暨南大学纳米光子学研究院,广东省纳米光学操控重点实验室,广东 广州 511443
2 仲恺农业工程学院自动化学院,广东 广州 510225
光学操控已被广泛应用于生物医学、物理和材料科学等领域。近年来,锥形光纤光镊由于具有操作灵活、结构紧凑、易于制造等特点,在光学操控领域引起了极大关注。作为一种非侵入式光操控工具,锥形光纤光镊不会对生物组织和活体细胞产生接触式物理损伤,因而可以直接应用于细胞的多维度操控。此外,红外光波对生物组织具有良好的穿透性,这使得锥形光纤光镊在生物及医学领域有着不俗的表现。在这篇综述,笔者总结了锥形光纤光镊在单细胞、多细胞、亚细胞等层面的研究现状,并介绍了其在神经细胞调控方面的最新进展。
生物光学 光纤光学 光纤光镊 光捕获 细胞操控 神经调控 
中国激光
2023, 50(15): 1507302
作者单位
摘要
暨南大学纳米光子学研究院广东省纳米光学操控重点实验室,广东 广州 511443
超构表面是人工设计的二维平面结构,可为光学器件的小型化和集成化提供新的思路。近年来,随着这一领域的不断发展,基于超构表面光学的各种光场调控机理和功能器件被提出。本文以光场操控的琼斯矩阵自由度为出发点,对近十年来的超构表面光学进展进行归类和综述,总结不同自由度琼斯矩阵的设计方法和相应的应用,并展望多自由度的超构器件研究的发展趋势。
超构表面 琼斯矩阵 多自由度 相位调控 振幅调控 
光学学报
2023, 43(16): 1623007
作者单位
摘要
暨南大学纳米光子学研究院,广东 广州 511443
实现对单颗粒的纳米尺度电极搭建,同时进行光谱表征和调控对构建纳米光电器件具有重要意义。提出并制备金(Au)纳米叉指电极搭载钛酸钡(BaTiO3)纳米颗粒结构,物理上将集体光栅表面等离极化激元模式与BaTiO3纳米颗粒的米氏共振以及Au-BaTiO3界面局域表面等离子共振模式耦合,实现了电极搭载直径200 nm以下BaTiO3单颗粒的散射调控和表征。该平台利用光栅结构作为“背景屏幕”,克服了电极结构对单个纳米颗粒散射谱的杂光干扰,解决了对单个颗粒加电难以探测其散射的难题。该纳米像素直径小于200 nm,散射谱可实现依赖于光栅尺寸和偏振的可见光波段可调,为后续构建基于单个纳米颗粒的光电调谐器件提供了方案。
散射 纳米颗粒 纳米光栅 米氏共振 表面等离激元共振 
光学学报
2022, 42(14): 1429001
作者单位
摘要
暨南大学纳米光子学研究院, 广东 广州 511443
光学微透镜在光学成像、信号探测、生物传感等方面有重要的应用。针对现有固体微透镜难以变焦和生物不兼容的问题,提出将细胞内的叶绿体作为天然的微透镜,并研究了叶绿体微透镜的聚焦特性及其在光学成像和信号探测中的应用。研究结果表明,叶绿体微透镜对不同波长的入射光能产生聚焦效应。借助光镊产生的光力可实现叶绿体形状的可控变化,进而可实现对叶绿体微透镜焦距的调节,调节范围为15~45 μm。由于叶绿体微透镜具有光束聚焦特性,故其能够应用到亚波长结构的成像和荧光信号的增强中。在实验中,叶绿体微透镜实现了对线宽为200 nm的光栅结构和细胞内部肌动蛋白丝的光学成像,以及对量子点荧光信号的探测和增强。
成像系统 微透镜 光镊 生物成像 光学探测 叶绿体 
光学学报
2022, 42(4): 0411003
Tianyue Li 1Xiaohao Xu 2,4,*Boyan Fu 1Shuming Wang 1,3,5,*[ ... ]Shining Zhu 1,3
Author Affiliations
Abstract
1 National Laboratory of Solid-State Microstructures, School of Physics, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
2 Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
3 Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing 210093, China
4 e-mail: xuxhao@jnu.edu.cn
5 e-mail: wangshuming@nju.edu.cn
Optical tweezers (OTs) and optical spanners (OSs) are powerful tools of optical manipulation, which are responsible for particle trapping and rotation, respectively. Conventionally, the OT and OS are built using bulky three-dimensional devices, such as microscope objectives and spatial light modulators. Recently, metasurfaces are proposed for setting up them on a microscale platform, which greatly miniaturizes the systems. However, the realization of both OT and OS with one identical metasurface is posing a challenge. Here, we offer a metasurface-based solution to integrate the OT and OS. Using the prevailing approach based on geometric and dynamic phases, we show that it is possible to construct an output field, which promises a high-numerical-aperture focal spot, accompanied with a coaxial vortex. Optical trapping and rotation are numerically demonstrated by estimating the mechanical effects on a particle probe. Moreover, we demonstrate an on-demand control of the OT-to-OS distance and the topological charge possessed by the OS. By revealing the OT–OS metasurfaces, our results may empower advanced applications in on-chip particle manipulation.
Photonics Research
2021, 9(6): 06001062
作者单位
摘要
暨南大学纳米光子学研究院, 广东 广州 511443
近年来,各种微纳光学效应被用于实现结构色甚至更精细的光谱调控,但这类方法大部分都基于彩色滤波原理,其光学效率难以接近甚至超越传统的染料滤波技术。首先介绍高像素密度图像传感器的色彩技术需求,并分析现有商用染料滤波器和微纳光学结构色滤波技术的局限性,然后介绍一类新兴的微纳结构空间分光色彩管理技术,并系统性地分析和讨论其技术原理和发展现状,最后总结该技术面临的挑战和发展趋势。
光学器件 亚波长结构 微纳光学 图像传感器 结构色 分束器 
光学学报
2021, 41(8): 0823010
Author Affiliations
Abstract
1 Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
2 e-mail: liyuchao@jnu.edu.cn
3 e-mail: zhyao5@jnu.edu.cn
We developed adjustable and movable droplet microlenses consisting of a liquid with a high refractive index. The microlenses were prepared via ultrasonic shaking in deionized water, and the diameter of the microlenses ranged from 1 to 50 μm. By stretching the microlenses, the focal length can be adjusted from 13 to 25 μm. With the assistance of an optical tweezer, controllable assembly and movement of microlens arrays were also realized. The results showed that an imaging system combined with droplet microlenses could image 80 nm beads under white light illumination. Using the droplet microlenses, fluorescence emission at 550 nm from CdSe@ZnS quantum dots was efficiently excited and collected. Moreover, Raman scattering signals from a silicon wafer were enhanced by 19 times. The presented droplet microlenses may offer new opportunities for flexible liquid devices in subwavelength imaging and detection.
Photonics Research
2020, 8(3): 03000225
作者单位
摘要
Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
optical trapping photothermal effect optical force cell trapping and assembly 
Frontiers of Optoelectronics
2019, 12(1): 97–110
Author Affiliations
Abstract
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
2 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
Aggregation of metal nanoparticles plays an important role in surface enhanced Raman scattering (SERS). Here, a strategy of dynamically aggregating/releasing gold nanoparticles is demonstrated using a gold-nanofilm coated nanofiber, with the assistance of enhanced optical force and plasmonic photothermal effect. Strong SERS signals of rhodamine 6G are achieved at the hotspots formed in the inter-particle and film-particle nanogaps. The proposed SERS substrate was demonstrated to have a sensitivity of 10 12 M, reliable reproducibility, and good stability.
Fiber optics sensors Optical tweezers or optical manipulation Integrated optics materials 
Photonics Research
2018, 6(5): 05000357
Author Affiliations
Abstract
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering,Sun Yat-Sen University, Guangzhou 510275, China
We report on the optical trapping and orientation of Escherichia coli (E. coli) cells using two tapered fiber probes. With a laser beam at 980 nm wavelength launched into probe I, an E. coli chain consisting of three cells was formed at the tip of probe I. After launching a beam at 980 nm into probe II, the E. coli at the end of the chain was trapped and oriented via the optical torques yielded by two probes. The orientation of the E. coli was controlled by adjusting the laser power of probe II. Experimental results were interpreted by theoretical analysis and numerical simulations.
Optical tweezers or optical manipulation Optical tweezers or optical manipulation Integrated optics Integrated optics Fiber optics Fiber optics 
Photonics Research
2015, 3(6): 06000308

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!